Calcium sensitivity and the Frank-Starling mechanism of the heart are increased in titin N2B region-deficient mice.
نویسندگان
چکیده
Previous work suggests that titin-based passive tension is a factor in the Frank-Starling mechanism of the heart, by increasing length-dependent activation (LDA) through an increase in calcium sensitivity at long sarcomere length. We tested this hypothesis in a mouse model (N2B KO model) in which titin-based passive tension is elevated as a result of the excision of the N2B element, one of cardiac titin's spring elements. LDA was assessed by measuring the active tension-pCa (-log[Ca(2+)]) relationship at sarcomere length (SLs) of 1.95, 2.10, and 2.30 microm in WT and N2B KO skinned myocardium. LDA was positively correlated with titin-based passive tension due to an increase in calcium sensitivity at the longer SLs in the KO. For example, at pCa 6.0, the KO:WT tension ratio was 1.28+/-0.07 and 1.42+/-0.04 at SLs of 2.1 and 2.3 microm, respectively. There was no difference in protein expression or total phosphorylation of sarcomeric proteins. We also measured the calcium sensitivity after PKA treating the skinned muscle and found that titin-based passive tension was also now correlated with LDA, with a slope that was significantly increased compared to no PKA treatment. Finally, we performed isolated heart experiments and measured the Frank-Starling relation (slope of developed wall stress-LV volume relation) as well as diastolic stiffness (slope of diastolic wall stress-volume relation). The FSM was more pronounced in the N2B KO hearts and the slope of the FSM correlated with diastolic stiffness. These findings support that titin-based passive tension triggers an increase in calcium sensitivity at long sarcomere length, thereby playing an important role in the Frank-Starling mechanism of the heart.
منابع مشابه
Titin isoform-dependent effect of calcium on passive myocardial tension.
We studied the effects of Ca2+ on titin (connectin)-based passive tension in skinned myocardium expressing either predominantly N2B titin (rat right ventricle, RRV) or predominantly N2BA titin (bovine left atrium, BLA). Actomyosin-based tension was abolished to undetectably low levels by selectively removing the thin filaments with a Ca2+-insensitive gelsolin fragment (FX-45). Myocardium was st...
متن کاملTitin isoform switch in ischemic human heart disease.
BACKGROUND Ischemia-induced cardiomyopathy usually is accompanied by elevated left ventricular end-diastolic pressure, which follows from increased myocardial stiffness resulting from upregulated collagen expression. In addition to collagen, a main determinant of stiffness is titin, whose role in ischemia-induced left ventricular stiffening was studied here. Human heart sarcomeres coexpress 2 p...
متن کاملTargeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy.
Titin is a giant protein that is in charge of the assembly and passive mechanical properties of the sarcomere. Cardiac titin contains a unique N2B region, which has been proposed to modulate elasticity of the titin filament and to be important for hypertrophy signaling and the ischemic stress response through its binding proteins FHL2 and alphaB-crystallin, respectively. To study the role of th...
متن کاملThe role of titin in the modulation of cardiac function and its pathophysiological implications.
Titin is a giant sarcomeric protein that extends from the Z-line to the M-line. Due to its location, it represents an important biomechanical sensor, which has a crucial role in the maintenance of the sarcomere structural integrity. Titin works as a "bidireactional spring" that regulates the sarcomeric length and performs adequate adjustments of passive tension whenever the length varies. There...
متن کاملA novel mechanism involving four-and-a-half LIM domain protein-1 and extracellular signal-regulated kinase-2 regulates titin phosphorylation and mechanics.
Understanding mechanisms underlying titin regulation in cardiac muscle function is of critical importance given recent compelling evidence that highlight titin mutations as major determinants of human cardiomyopathy. We previously identified a cardiac biomechanical stress-regulated complex at the cardiac-specific N2B region of titin that includes four-and-a-half LIM domain protein-1 (Fhl1) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular and cellular cardiology
دوره 49 3 شماره
صفحات -
تاریخ انتشار 2010